Learn about the medical, dental, pharmacy, behavioral, and voluntary benefits your employer may offer.
In 2024, an estimated 2,001,140 people will be diagnosed with cancer in the United States, and an estimated 611,720 people will die of cancer.[
References:
Prevention is defined as the reduction of cancer mortality via reduction in the incidence of cancer. This can be accomplished by avoiding a carcinogen or altering its metabolism; pursuing lifestyle or dietary practices that modify cancer-causing factors or genetic predispositions; medical interventions (e.g., chemoprevention) or risk-reducing surgical procedures; or early detection strategies that can result in removal of precancerous lesions, such as colonoscopy for colorectal polyps.
The PDQ cancer prevention summaries are primarily organized by specific anatomical cancer site to facilitate consideration of the unique characteristics of specific malignancies. This section provides an overview of cancer prevention strategies, including a summary of evidence for selected strategies used to prevent a broad spectrum of malignancies. The strength of evidence and magnitude of effects of these strategies, however, may vary by cancer site. Other PDQ cancer prevention summaries address the prevention of specific types of cancer and provide more detailed descriptions of the evidence.
There are many common beliefs or speculations about causes of cancer. However, putative causes of cancer for which there is very little scientific evidence, positive or negative, are not considered in these summaries. Therefore, absence of an environmental, dietary, or lifestyle factor from these summaries implies insufficient evidence for detailed consideration and not necessarily absence of effect. Many such factors are deserving of research regarding their potential roles in cancer, but if that research does not exist, has not been published, or the Editorial Board judges the research to be of insufficient quantity or of poor quality, they are not addressed in these summaries.
Carcinogenesis refers to an underlying etiological pathway that leads to cancer. Several models of carcinogenesis have been proposed. Knudson proposed a "two-hit" model requiring a mutation in both copies of a gene resulting in cancer. Expansion of this concept has resulted in other widely cited models of carcinogenesis including those of Vogelstein and Kinzler [
The model of Hanahan and Weinberg focuses on the hallmark events at the cellular level that lead to a malignant tumor. In this model, the hallmarks of cancer include sustained angiogenesis, limitless replicative potential, evading apoptosis, self-sufficiency in growth signals, and insensitivity to antigrowth signals, leading to the defining characteristics of malignant tumors, which give them the ability to invade and metastasize. This model highlights the fact that malignant tumors arise and flourish within the environment of a whole organism. The tissue organizational field theory [
Models of carcinogenesis such as these are purposefully simplistic but, nevertheless, illustrate that carcinogenesis requires a constellation of steps that often take place for decades.
The complexity of carcinogenesis is magnified when one considers that the specific details of the carcinogenic pathway described by these models would be expected to have unique characteristics for each anatomical site. Under these circumstances, the risk factors and clinical characteristics of malignancies exhibit considerable variation by anatomic site and by different tumor types within the same anatomical site. For these reasons, human cancer is really not a single disease but a family of different diseases.
References:
The promise of cancer prevention is derived from observational epidemiological studies that show associations between modifiable lifestyle factors or environmental exposures and specific cancers. The expectation is that, if a risk factor truly causes cancer, it would also be the case that a lifestyle modification (i.e., changing one's risk profile from bad to good) would actually reduce cancer risk, at least partially. This expectation can be fulfilled only if the association is due to a causal (and ideally, reversible) relationship. Because observational studies rarely provide conclusive evidence of such relationships, additional evidence is required.[
Risk Factors Causally Associated With Cancer
Cigarette smoking/tobacco use
Decades of research have consistently established the strong association between tobacco use and cancers of many sites. Specifically, cigarette smoking has been established as a cause of a range of cancers, including lung, oral cavity, esophageal, bladder, kidney, pancreatic, stomach, and cervical cancers, and acute myelogenous leukemia. The body of epidemiological evidence confirming these associations is substantial. Further support is demonstrated by the lung cancer death rates in the United States, which have mirrored smoking patterns, with increases in smoking followed by dramatic increases in lung cancer death rates and, more recently, decreases in smoking followed by decreases in lung cancer death rates in men. As a single exposure that is relatively easy to measure accurately, this extensive body of evidence has led to the estimation that cigarette smoking causes 30% of all cancer deaths in the United States. Smoking avoidance and smoking cessation result in decreased incidence and mortality from cancer.[
Infections
Globally, infectious agents have been estimated to cause about 13% of all cancer cases.[
Radiation
Radiation is energy in the form of high-speed particles or electromagnetic waves. Exposure to radiation, primarily UV radiation and ionizing radiation, is a clearly established cause of cancer. Exposure to solar UV radiation is the major cause of nonmelanoma skin cancers, which are by far the most common malignancies in human populations.[
Ionizing radiation is radiation with enough energy to remove tightly bound electrons from their orbits, causing atoms to become charged or ionized. Ions formed in the molecules of living cells can go on to react with and potentially damage other molecules in the cell. At low doses (e.g., those associated with background radiation), the cells repair the damage rapidly. At moderate doses, the cells may be changed permanently or die from their inability to repair the damage. Cells changed permanently may go on to produce abnormal cells when they divide, and in some circumstances, these altered cells may become cancerous or lead to other abnormalities (e.g., birth defects). Defects in ability to repair damage caused by ionizing radiation may influence the impact of radiation exposure on cancer risk.
There is extensive epidemiological and biological evidence that links exposure to ionizing radiation with the development of cancer, and in particular, cancer that involves the hematological system, breast, lungs, and thyroid. The National Research Council of the National Academies' Committee to Assess the Health Risks from Exposure to Low Levels of Ionizing Radiation report, the Biologic Effects of Ionizing Radiation VII,[
The major sources of population exposure to ionizing radiation are medical radiation (including x-rays, computed tomography [CT], fluoroscopy, and nuclear medicine) and naturally occurring radon gas in the basements of homes. Limiting unnecessary CT scans and other diagnostic studies, as well as reducing radiation exposure doses, are important prevention strategies.[
Exposure to ionizing radiation has increased during the last two decades as a result of the dramatic increase in the use of CT. Exposure to ionizing radiation associated with CT is in the range where carcinogenesis has been demonstrated.[
One approach to estimate the potential contribution of exposure to ionizing radiation from medical imaging is to develop statistical models based on the estimated cancer risks associated with a range of dose levels. For example, one estimate of the CT scans performed in the United States in 2007 predicted that 29,000 (95% uncertainty limits of 15,000–45,000) cancers might result in the future. One-third of the projected cancers were caused by CT scans done on individuals aged 35 to 54 years. This estimate was derived from risk models based on organ-specific radiation doses from national surveys, frequency of CT scans in 2007 by age and sex from survey and insurance claim data, and the National Research Council of the National Academies' report, Biological Effects of Ionizing Radiation.[
Data are now emerging from studies large enough to directly estimate the cancer risk associated with diagnostic imaging using ionizing radiation. For example, in a cohort of 10.9 million Australians, electronic medical records were used to document the diagnostic CT scans of youths who received CT scans when they were aged 0 to 19 years. This cohort was then linked to the National Death Index and Australian Cancer Database.[
Diagnostic imaging in childhood and adolescence is even associated with an elevated risk of a broad range of solid and hematologic malignancies at a young age. In a population-based South Korean cohort of more than 12 million children aged 0 to 19 years, the incidence rate ratio of cancers in the 10.6% of those exposed to diagnostic radiation was 1.64 after a lag period of 2 years since exposure (95% CI, 1.56–1.73; P < .001), compared with those who had no exposure.[
Immunosuppression after organ transplantation
Medications that suppress the immune system in patients undergoing organ transplantation are associated with an increased cancer risk.[
Risk/Protective Factors With Uncertain Associations With Cancer
Diet
Estimates concerning the potential contribution of diet to the population burden of cancer have varied widely.[
Examples in which the type of study design led to substantively different results further illustrate the complexities of the relationship between food and nutrient intake and human cancer risk. Observational epidemiological studies (case-control and cohort studies), which used self-reported dietary assessments that are prone to substantial measurement error, have suggested associations between diet and cancer development, but randomized trials of interventions provided little or no support. For example, on the basis of population-based epidemiological data, high-fiber diets were recommended to prevent colon neoplasms. However, a 2017 Cochrane database systematic review of RCTs of supplemental fiber found a lack of evidence to suggest that increased dietary fiber intake reduces the recurrence of adenomatous polyps in those with a history of adenomatous polyps within a 2- to 8-year period.[
Associations reported from observational epidemiological analysis based on self-reported assessments should be viewed in the context of the limitations described above. On the other hand, stronger evidence of causal relationships is unlikely to be provided by relatively short-term RCTs, especially if lifelong dietary patterns or dietary intake during specific life stages are most important in inducing or preventing cancer.
Alcohol
With respect to dietary factors that may increase cancer risk, the strongest evidence in the World Cancer Research Fund and American Institute for Cancer Research (WCRF/AICR) report was for drinking alcohol. The evidence was judged to be "convincing" that drinking alcohol increased the risk of cancers of the mouth, esophagus, breast, and colorectum (the latter in men). Further, the evidence was judged to be "probable" that drinking alcohol increased the risk of liver cancer and colorectal cancer (the latter in women).
In relation to human cancer, diets reflect the sum total of a complex mixture of exposures, as demonstrated by the examples of fruit/vegetable intake and alcohol consumption. No dietary factors appear to be uniformly relevant to all forms of cancer. For more information, see the following PDQ summaries:
Physical activity
A growing body of epidemiological evidence suggests that people who are more physically active have a lower risk of certain malignancies than those who are more sedentary. The evidence was judged to be "probable" that physical activity was associated with lower risk of postmenopausal breast cancer and endometrial cancer. As with the dietary factors described above, physical activity seems to play a more prominent role in selected malignancies. The inverse associations observed for selected malignancies make this a promising area for cancer prevention research, particularly because causal associations have not been established. The excess risk of many cancers seen with obesity, in combination with evidence to suggest that physical activity is inversely associated with at least a few cancers, raises the hypothesis that energy balance may influence cancer risk. For more information, see Breast Cancer Prevention; Colorectal Cancer Prevention; and Endometrial Cancer Prevention.
Obesity
Obesity is being increasingly recognized as an important cancer risk factor. The WCRF/AICR report concluded that obesity is convincingly linked to postmenopausal breast cancer and cancers of the esophagus, pancreas, colorectum, endometrium, and kidney. Furthermore, the WCRF/AICR report judged body fatness to be a probable risk factor for cancer of the gallbladder and the evidence to be "limited suggestive" for liver cancer. These conclusions from the WCRF/AICR evidence review were corroborated in a cohort study based on medical records data from 5.24 million adults in the United Kingdom.[
A recent analysis [
Diabetes
Observational studies suggest that all-cancer incidence and mortality are slightly increased (10%–15%) in individuals with diabetes, although the increase is greater for certain organ sites and null for others.[
At least four of the following characteristics of diabetes have been hypothesized to increase cancer risk:
Diabetes and cancer share a number of risk factors, including aging, obesity, smoking, unhealthy diet, and physical inactivity.[
In prospective observational studies, risk of, and death due to, liver, pancreas, colon/colorectum, and female breast cancer are consistently higher in individuals with diabetes. Increases in risk or death also have been observed for cancer of the endometrium, ovary, bladder, and oral cavity/pharynx. In a prospective cohort with long-term follow-up of more than a million U.S. adults [
Metformin use has been associated with a decrease in breast cancer incidence and mortality in observational studies and is currently under study in clinical trials. Metformin has been hypothesized to reduce risk by inhibiting tumor cell growth and proliferation through adenosine monophosphate (AMP)–kinase activation. The use of medications that affect incretin receptor signaling has been postulated to increase pancreatic cancer incidence, but neither animal nor clinical data (which are limited) support this claim at this time.[
The Impact of Screen Detection on Measures of Risk
Many of the groundbreaking observational studies in cancer etiology date back to a time when widespread cancer screening did not occur. Given the extensive uptake of screening for certain cancers over the past quarter-century, recently conducted observational etiological studies included participants whose disease was detected through screening. When overdiagnosis exists with screening, and screening behavior or willingness to seek diagnostic evaluation is correlated with cancer risk factors, relative risk measures generated from today's etiology studies may not agree with those from studies conducted before the widespread use of screening. This is because overdiagnosed cases would never have been diagnosed in the absence of screening. For example, assume that blue eyes (relative to brown eyes) are associated with receiving prostate-specific antigen screening or preference for diagnostic biopsy, but not with prostate cancer. In the absence of screening, a null result would have been observed for the association of blue eyes and prostate cancer. In the presence of screening, blue eyes would be associated with prostate cancer because blue eyes would lead to screening, and screening would detect overdiagnosed cases.[
References:
Chemoprevention
Chemoprevention refers to the use of natural or synthetic compounds to interfere with early stages of carcinogenesis, before invasive cancer appears.[
Selective estrogen receptor modulators (tamoxifen and raloxifene), taken daily for up to 5 years, reduce breast cancer incidence by 50% in high-risk women.[
Finasteride (an alpha-reductase inhibitor) lowers the incidence of prostate cancer.[
COX-2 inhibitors inhibit the cyclooxygenase enzymes that are involved in the synthesis of proinflammatory prostaglandins. Evidence suggests that COX-2 inhibitors may prevent colon and breast cancer, but concerns about cardiovascular risk preclude extensive study. A randomized controlled trial of moderately high-dose celecoxib in patients with arthritis showed no difference in cardiovascular outcomes when compared with nonselective nonsteroidal anti-inflammatory agents (NSAIDs).[
Bariatric Surgery
Bariatric surgery is currently the most effective method for achieving long-term weight loss, and in concert, dramatically improving or preventing diabetes mellitus and hypertension, even in those with previous severe obesity.[
References:
Aspirin
Aspirin has been studied extensively as a chemopreventive agent. However, the evidence of benefit for the prevention of cancer or cancer deaths in the general population is mixed, but generally negative. A secondary analysis of pooled data from seven placebo-controlled randomized controlled trials (RCTs) with primary end points of vascular events showed that daily aspirin for at least 4 years reduced overall cancer deaths by 18% (odds ratio, 0.82; 95% confidence [CI], 0.70–0.95).[
Cancer incidence was a prospective secondary, albeit underpowered end point in the aspirin components of a 2 × 2 factorial placebo-controlled trial of a polypill (containing simvastatin, atenolol, hydrochlorothiazide, and ramipril) and aspirin (75 mg/day).[
Because aspirin may help reduce death from cardiovascular disease (which is responsible for more deaths than cancer), use of aspirin should be considered in a larger context of prevention beyond cancer. Similarly, serious harms from bleeding (from the gastrointestinal tract or intracranially) should be considered in light of patients' individual risks of specific harms. For more information, see Colorectal Cancer Prevention.
Vitamin and Dietary Supplement Use
Some have advocated vitamin and mineral supplements for cancer prevention. Many different mechanistic pathways for anticancer effects have been invoked. A commonly tested hypothesis is that antioxidant vitamins may protect against cancer, based on the premise that oxidative damage to DNA leads to cancer progression. Hence preventing oxidative DNA damage would prevent progression to cancer. However, the evidence is insufficient to support the use of multivitamin and mineral supplements or single vitamins or minerals to prevent cancer.[
Other unanticipated adverse events have been documented for dietary supplement use. A meta-analysis of 11 randomized, double-blind, placebo-controlled trials of daily doses of calcium greater than or equal to 500 mg/day versus placebo documented that calcium supplements were associated with a significantly elevated risk of myocardial infarction (RR, 1.27; 95% CI, 1.01–1.59).[
Research into the potential anticancer properties of vitamin and mineral supplements is ongoing, and the results continue to reinforce the lack of efficacy of vitamin supplements in preventing cancer. The extended follow-up results of the Selenium and Vitamin E Cancer Prevention Trial (SELECT) found a statistically significant excess risk of prostate cancer associated with vitamin E supplementation (400 IU/day of all rac -α-tocopherol acetate) compared with placebo (HR, 1.17; 99% CI, 1.0004–1.36; P = .008). The absolute increase in risk of prostate cancer with vitamin E use was 1.6 per 1,000 person-years. Selenium did not reduce the risk of prostate cancer (HR, 1.09; 99% CI, 0.93–1.27).[
The results of the Physicians' Health Study (PHS) II demonstrated that supplementation with vitamin E and/or vitamin C had no benefit, compared with placebo, in preventing either prostate cancer incidence or total cancer incidence.[
The results of the Women's Antioxidant Cardiovascular Study indicated that, compared with placebo, supplementation with vitamin C, vitamin E, or beta carotene was not efficacious in reducing total cancer incidence.[
Vitamin D has also generated interest as a potential anticancer agent. Sources of vitamin D include cutaneous synthesis upon exposure to sunlight, dietary intake, and supplements. Evidence for the efficacy of vitamin D supplements with or without calcium in preventing cancer incidence is available as a secondary end point from RCTs, with a summary of the results from three trials providing evidence of lack of efficacy.[
None of the RCTs mentioned above studied multivitamin supplements as commonly taken by the general U.S. population; however, a separate arm of the PHS II directly studied this question. In the PHS II, 14,641 male physicians were randomly assigned to receive either a daily multivitamin supplement or a placebo for a median of 11 years.[
References:
The relationship between environmental pollutants and cancer risk has been of long-standing interest to researchers and the public. When estimates of the potential burden of cancer have been calculated for different classes of exposure, the factors described earlier, such as cigarette smoking and infections, have represented much greater proportions of the cancer burden than have environmental pollutants. Nevertheless, some associations between environmental pollutants and cancer have been clearly established. Perhaps because the lungs are most heavily exposed to air pollutants, many of the most firmly established examples of pollutants and cancer relate specifically to lung cancer, including secondhand tobacco smoke, indoor radon, outdoor air pollution, and asbestos for mesothelioma. Another environmental pollutant linked with cancer is highly concentrated inorganic arsenic in drinking water, which is causally associated with cancers of the skin, bladder, and lung. Many other environmental pollutants, such as pesticides, have been assessed for risk with human cancer, but with indeterminate results. There are challenging methodological issues to address in these studies, such as accurately measuring exposures for long periods, which often make it difficult to clearly establish an association between an environmental pollutant and cancer.
The list of topics considered above is not exhaustive. Other lifestyle and environmental factors known to affect cancer risk (either beneficially or detrimentally) include certain sexual and reproductive practices, the use of exogenous estrogens, and certain occupational and chemical exposures.
In this summary, factors were selected that appear to impact the risk of several types of cancer and that have been identified as being potentially modifiable. These risk factors include cigarette smoking, which has been conclusively linked with a wide range of malignancies. Avoidance of cigarette smoking has been shown to reduce cancer incidence. Other potential modifiable cancer risk factors include alcohol consumption and obesity, as well as physical activity, which is inversely associated with the risk of certain cancers. More research is needed to determine whether these associations are causal and whether avoiding risk behaviors or increasing protective behaviors would actually reduce cancer incidence.
The PDQ cancer information summaries are reviewed regularly and updated as new information becomes available. This section describes the latest changes made to this summary as of the date above.
The Burden of Cancer
Updated statistics with estimated new cases and deaths for 2024 (cited American Cancer Society as reference 1).
This summary is written and maintained by the
Purpose of This Summary
This PDQ cancer information summary for health professionals provides comprehensive, peer-reviewed, evidence-based information about cancer prevention. It is intended as a resource to inform and assist clinicians in the care of their patients. It does not provide formal guidelines or recommendations for making health care decisions.
Reviewers and Updates
This summary is reviewed regularly and updated as necessary by the
Board members review recently published articles each month to determine whether an article should:
Changes to the summaries are made through a consensus process in which Board members evaluate the strength of the evidence in the published articles and determine how the article should be included in the summary.
Any comments or questions about the summary content should be submitted to Cancer.gov through the NCI website's
Levels of Evidence
Some of the reference citations in this summary are accompanied by a level-of-evidence designation. These designations are intended to help readers assess the strength of the evidence supporting the use of specific interventions or approaches. The PDQ Screening and Prevention Editorial Board uses a formal evidence ranking system in developing its level-of-evidence designations.
Permission to Use This Summary
PDQ is a registered trademark. Although the content of PDQ documents can be used freely as text, it cannot be identified as an NCI PDQ cancer information summary unless it is presented in its entirety and is regularly updated. However, an author would be permitted to write a sentence such as "NCI's PDQ cancer information summary about breast cancer prevention states the risks succinctly: [include excerpt from the summary]."
The preferred citation for this PDQ summary is:
PDQ® Screening and Prevention Editorial Board. PDQ Cancer Prevention Overview. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at:
Images in this summary are used with permission of the author(s), artist, and/or publisher for use within the PDQ summaries only. Permission to use images outside the context of PDQ information must be obtained from the owner(s) and cannot be granted by the National Cancer Institute. Information about using the illustrations in this summary, along with many other cancer-related images, is available in
Disclaimer
The information in these summaries should not be used as a basis for insurance reimbursement determinations. More information on insurance coverage is available on Cancer.gov on the
Contact Us
More information about contacting us or receiving help with the Cancer.gov website can be found on our
Last Revised: 2024-03-06
This information does not replace the advice of a doctor. Ignite Healthwise, LLC, disclaims any warranty or liability for your use of this information. Your use of this information means that you agree to the
Healthwise, Healthwise for every health decision, and the Healthwise logo are trademarks of Ignite Healthwise, LLC.
Individual and family medical and dental insurance plans are insured by Cigna Health and Life Insurance Company (CHLIC), Cigna HealthCare of Arizona, Inc., Cigna HealthCare of Illinois, Inc., Cigna HealthCare of Georgia, Inc., Cigna HealthCare of North Carolina, Inc., Cigna HealthCare of South Carolina, Inc., and Cigna HealthCare of Texas, Inc. Group health insurance and health benefit plans are insured or administered by CHLIC, Connecticut General Life Insurance Company (CGLIC), or their affiliates (see
All insurance policies and group benefit plans contain exclusions and limitations. For availability, costs and complete details of coverage, contact a licensed agent or Cigna sales representative. This website is not intended for residents of New Mexico.