Learn about the medical, dental, pharmacy, behavioral, and voluntary benefits your employer may offer.
For most people, the major factor that increases a person's risk for colorectal cancer (CRC) is advancing age. Risk increases dramatically after age 50 years; 90% of all CRCs are diagnosed after this age. Incidence and mortality rates are higher in African American individuals compared with other races; however, a meta-analysis found no evidence that African American individuals have higher rates of precancerous lesions.[
References:
Note: The Overview section summarizes the published evidence on this topic. The rest of the summary describes the evidence in more detail.
Other PDQ summaries on Colorectal Cancer Screening; Colon Cancer Treatment; and Rectal Cancer Treatment are also available.
Factors With Adequate Evidence of Increased Risk of Colorectal Cancer
Excessive alcohol use
Based on solid evidence from observational studies, excessive alcohol use is associated with an increased risk of colorectal cancer (CRC).[
Magnitude of Effect: A pooled analysis of eight cohort studies estimated an adjusted relative risk (RR) of 1.41 (95% confidence interval [CI], 1.16–1.72) for consumption exceeding 45 g/day.[
Study Design: Cohort studies. |
Internal Validity: Fair. |
Consistency: Fair. |
External Validity: Fair. |
Cigarette smoking
Based on solid evidence, cigarette smoking is associated with increased incidence of and mortality from CRC.
Magnitude of Effect: A pooled analysis of 106 observational studies estimated an adjusted RR (current smokers vs. never smokers) of 1.18 for developing CRC (95% CI, 1.11–1.25).[
Study Design: 106 observational studies. |
Internal Validity: Fair. |
Consistency: Good. |
External Validity: Good. |
Obesity
Based on solid evidence, obesity is associated with increased incidence of and mortality from CRC.
Magnitude of Effect: In one large cohort study, the adjusted RR of developing colon cancer for women with a body mass index greater than 29 was 1.45 (95% CI, 1.02–2.07).[
Study Design: Large cohort studies. |
Internal Validity: Fair. |
Consistency: Good. |
External Validity: Good. |
Family/personal history of colorectal cancer and other hereditary conditions
Based on solid evidence, a family history of CRC in a first-degree relative or a personal history of CRC increases the risk of CRC.[
Magnitude of Effect: In persons with familial adenomatous polyposis, the risk of CRC by age 40 can be as high as 100%. Persons with Lynch syndrome can have a lifetime risk of CRC of about 80%.
Study Design: Case-control and cohort studies. |
Internal Validity: Good. |
Consistency: Good. |
External Validity: Good. |
For more information about family history and hereditary conditions, see Genetics of Colorectal Cancer.
Factors With Adequate Evidence for a Decreased Risk of Colorectal Cancer
Physical activity
Based on solid evidence, regular physical activity is associated with a decreased incidence of CRC.
Magnitude of Effect: A meta-analysis of 52 observational studies found a statistically significant 24% reduction in CRC incidence (RR, 0.76; 95% CI, 0.72–0.81).[
Study Design: Cohort studies and meta-analysis. |
Internal Validity: Fair. |
Consistency: Good. |
External Validity: Good. |
Interventions With Adequate Evidence for a Decreased Risk of Colorectal Cancer
Aspirin: benefits
Based on solid evidence, daily aspirin (acetylsalicylic acid [ASA]) reduces CRC incidence and mortality after 10 to 20 years. This is based on three individual participant-level data meta-analyses of trials of aspirin used for the primary and secondary prevention of cardiovascular disease.[
Magnitude of Effect: ASA use reduces the long-term risk of developing CRC by 40% about 10 to 19 years after initiation (hazard ratio [HR], 0.60; 95% CI, 0.47–0.76).[
Study Design: Individual patient-level data meta-analyses of randomized controlled trials (RCTs) of ASA for primary and secondary cardiovascular prevention. |
Internal Validity: Fair, some data from registries and death certificates, some loss to follow-up; variations in ASA dose and timing; adherence to ASA unknown after end of trials (5–9 years); trials designed to answer a different primary hypothesis (cardiovascular disease prevention). |
Consistency: Generally consistent. |
External Validity: Fair, most data (>75%) from men. |
Aspirin: harms
Based on solid evidence, harms of ASA use include excessive bleeding, including gastrointestinal bleeds and hemorrhagic stroke.
Magnitude of Effect: Very low-dose ASA use (i.e., ≤100 mg every day or every other day) results in an estimated 14 (95% CI, 7–23) additional major gastrointestinal bleeding events and 3.2 (95% CI, -0.5 to 0.82) extra hemorrhagic strokes per 1,000 persons over 10 years. These risks increase with advancing age.[
Study Design: Evidence obtained from RCTs, cohort studies, and meta-analyses comparing ASA with placebo or no treatment for the primary prevention of cardiovascular disease.[ |
Internal Validity: Fair, data are from clinically and methodologically heterogeneous trials. |
Consistency: Good. |
External Validity: Fair, data on specific subgroups are limited. |
Hormone therapy (estrogen plus progestin): benefits
Based on solid evidence, combined hormone therapy (conjugated equine estrogen and progestin) decreases the incidence of invasive CRC.[
Based on fair evidence, combination conjugated equine estrogen and progestin has little or no benefit in reducing mortality from CRC. Data from the Women's Health Initiative (WHI), a randomized, placebo-controlled trial evaluating estrogen plus progestin, with a mean intervention of 5.6 years and a follow-up of 11.6 years, showed that women taking combined hormone therapy had a statistically significant higher stage of cancer (regional and distant) at diagnosis but not a statistically significant number of deaths from CRC compared with women taking the placebo.[
Magnitude of Effect: There were fewer CRCs in the combined hormone therapy group than in the placebo group (0.12% vs. 0.16%; HR, 0.72; 95% CI, 0.56–0.94). A meta-analysis of cohort studies observed a RR of 0.86 (95% CI, 0.76–0.97) for incidence of CRC associated with combined hormone therapy.
There were 37 CRC deaths in the combined hormone therapy arm compared with 27 deaths in the placebo arm (0.04% vs. 0.03%; HR, 1.29; 95% CI, 0.78–2.11).
Study Design: RCT and cohort studies. |
Internal Validity: Good. |
Consistency: Good for effect on incidence; not applicable (N/A) for effect on mortality; results were based on one trial. |
External Validity: Good. |
Hormone therapy (estrogen plus progestin): harms
Based on solid evidence, harms of postmenopausal combined estrogen-plus-progestin hormone use include increased risk of breast cancer, coronary heart disease, and thromboembolic events.
Magnitude of Effect: The WHI showed a 26% increase in invasive breast cancer in the combined hormone group, a 29% increase in coronary heart disease events, a 41% increase in stroke rates, and a twofold higher rate of thromboembolic events.[
Study Design: Evidence from RCTs. |
Internal Validity: Good. |
Consistency: Good. |
External Validity: Fair. |
Polyp removal: benefits
Based on fair evidence, removal of adenomatous polyps reduces the risk of CRC. Much of this reduction likely comes from removal of large (i.e., >1.0 cm) polyps, while the benefit of removing smaller polyps—which are much more common—is unknown. Some but not all observational evidence indicates that this reduction may be greater for left-sided CRC than for right-sided CRC.[
Magnitude of Effect: Unknown, probably greater for larger polyps (i.e., >1.0 cm) than for smaller ones.[
Study Design: Evidence obtained from cohort studies and one RCT of sigmoidoscopy.[ |
Internal Validity: Good. |
Consistency: Consistent. |
External Validity: Good. |
Polyp removal: harms
Based on solid evidence, the major harms of polyp removal include perforation of the colon and bleeding.
Magnitude of Effect: Seven to nine events per 1,000 procedures.[
Study Design: Evidence from retrospective cohort studies.[ |
Internal Validity: Good. |
Consistency: Good. |
External Validity: Good. |
Factors With Inadequate Evidence of an Association With Colorectal Cancer
Nonsteroidal anti-inflammatory drugs (NSAIDs): benefits
There is inadequate evidence that the use of NSAIDs reduces the risk of CRC. In people without genetic predisposition but with a prior history of a colonic adenoma that had been removed, three RCTs found that celecoxib [
Based on solid evidence, NSAIDs reduce the risk of adenomas, but the extent to which this translates into a reduction of CRC is uncertain.[
Study Design: No adequate studies with CRC outcome. |
Internal Validity: N/A. |
Consistency: N/A. |
External Validity: N/A. |
NSAIDs: harms
Based on solid evidence, harms of NSAID use are relatively common and potentially serious, and include upper gastrointestinal bleeding, chronic kidney disease, and serious cardiovascular events such as myocardial infarction, heart failure, and hemorrhagic stroke.[
Magnitude of Effect: The estimated average excess risk of upper gastrointestinal complications in average-risk people attributable to NSAIDs is 4 to 5 per 1,000 people per year.[
Study Design: Evidence obtained from RCTs and high-quality systematic reviews and meta-analyses.[ |
Internal Validity: Good. |
Consistency: Good. |
External Validity: Good. |
Calcium supplementation
The evidence is inadequate to determine whether calcium supplementation reduces the risk of CRC.
Dietary factors
There is no reliable evidence that a diet started in adulthood that is low in fat and meat and high in fiber, fruits, and vegetables reduces the risk of CRC by a clinically important degree.
Factors and Interventions With Adequate Evidence of no Association With Colorectal Cancer
Estrogen-only therapy: benefits
Based on fair evidence, conjugated equine estrogens do not affect the incidence of or mortality from invasive CRC.[
Magnitude of Effect: N/A.
Study Design: Evidence from RCTs. |
Internal Validity: Good. |
Consistency: Good. |
External Validity: Fair. |
Statins: benefits
Based on solid evidence, statins do not reduce the incidence of or mortality from CRC.
Study Design: Meta-analyses of RCTs.[ |
Internal Validity: Good. |
Consistency: Good. |
External Validity: N/A. |
Statins: harms
Based on solid evidence, the harms of statins are small.
Study Design: Observational studies,[ |
Internal Validity: Good. |
Consistency: Good. |
External Validity: Good. |
References:
Colorectal cancer (CRC) is the third most common malignant neoplasm worldwide [
The overall 5-year survival rate is 64% for CRC. About 4.12% of Americans are expected to develop CRC within their lifetimes.[
References:
Genetics,[
References:
Excessive Alcohol Use
There is evidence of an association of colorectal cancer (CRC) with alcoholic beverage consumption. In a meta-analysis of eight cohort studies, the relative risk (RR) for consumption of 45 g/day (i.e., about three standard drinks per day) compared with nondrinkers was 1.41 (95% confidence interval [CI], 1.16–1.72).[
Five studies have reported a positive association between alcohol intake and colorectal adenomas.[
A large cohort study found a dose-response relationship between alcohol intake and death from CRC, with a RR of 1.2 (95% CI, 1.0–1.5) for four or more drinks per day compared with nondrinkers.[
Cigarette Smoking
Most case-control studies of cigarette exposure and adenomas have found an elevated risk for smokers.[
A meta-analysis of 106 observational studies found a RR (ever smokers vs. nonsmokers) for CRC incidence of 1.18 (95% CI, 1.11–1.25), with an absolute risk increase of 10.8 cases per 100,000 person-years (95% CI, 7.9–13.6). There was a statistically significant dose-response effect. In 17 studies with data on CRC mortality, cigarette smoking was associated with CRC death, with a RR (ever smokers vs. never smokers) of 1.25 (95% CI, 1.14–1.37), and an absolute increase in the death rate of 6.0 deaths per 100,000 person-years. For both incidence and mortality, the association was stronger for rectal cancer than for colon cancer.[
Obesity
At least three large cohort studies have found an association between obesity and CRC incidence or mortality.[
Family/Personal History of Colorectal Cancer and Other Hereditary Conditions
Some of the earliest studies of family history of CRC were those of Utah families that reported a higher number of deaths from CRC (3.9%) among the first-degree relatives of patients who had died from CRC than among sex-matched and age-matched controls (1.2%). This difference has since been replicated in numerous studies that have consistently found that first-degree relatives of affected cases are themselves at a twofold to threefold increased risk of CRC. Despite the various study designs (case-control, cohort), sampling frames, sample sizes, methods of data verification, analytic methods, and countries where the studies originated, the magnitude of risk is consistent.[
A systematic review and meta-analysis of familial CRC risk was reported.[
Hereditary CRC has two well-described forms: Familial adenomatous polyposis (including an attenuated form of polyposis), due to germline mutations in the APC gene,[
For more information about genetic risk factors for CRC, see Genetics of Colorectal Cancer.
References:
Physical Activity
A sedentary lifestyle has been associated with an increased risk of colorectal cancer in some [
References:
Aspirin
Evidence from individual participant-level data meta-analyses of randomized controlled trials (RCTs) and observational studies [
The Cancer Prevention Programme (CAPP2), previously known as the Concerted Action Polyposis Prevention project, investigated chemoprevention of CRC in patients with known Lynch syndrome across 43 international centers. For more information, see the Lynch Syndrome section in Genetics of Colorectal Cancer. Patients were randomly assigned to receive aspirin (600 mg/day), aspirin-placebo, resistant starch (30 g/day), or starch-placebo for up to 4 years. A planned 10-year analysis of CAPP2 data found reduced CRC incidence in patients with Lynch syndrome who took aspirin for at least 2 years when compared with those who took placebo. An intention-to-treat analysis, using Cox proportional hazards regression, showed that aspirin protected against the primary end point of CRC (HR, 0.65; 95% CI, 0.43–0.97; P = .035).[
In a randomized study of 635 patients with prior CRC (T1–T2 N0 M0) who had undergone curative resection, ASA intake at 325 mg/day was associated with a decrease in the adjusted RR of any recurrent adenoma as compared with the placebo group (0.65; 95% CI, 0.46–0.91) after a median duration of treatment of 31 months. The likelihood of detection of a new colonic lesion was lower in the ASA group than in the placebo group (HR for the detection of a new polyp, 0.54; 95% CI, 0.43–0.94, P = .022).[
ASA has also been evaluated for its potential effects on CRC mortality. A 2010 individual patient level data meta-analysis analyzed long-term (median follow-up, 18.3 years) data from four RCTs of primary and secondary cardiovascular disease prevention; it found that allocation to use of 75 to 1,200 mg of daily ASA for at least one year reduced the cumulative risk of colon cancer death compared with controls (HR, 0.67; 95% CI, 0.52–0.86). Aspirin reduced CRC mortality beginning 10 to 20 years after randomization, but not before.[
Six RCTs, including five from the United Kingdom, were included in a meta-analysis in which patients were randomly assigned to receive either aspirin or placebo, and the mean scheduled duration of trial treatment was 4 years or more. Individual patient data for all in-trial cancer deaths were obtained. In the three United Kingdom trials, cancer deaths after completion of the trials were obtained via death certification and cancer registration, taking the follow-up to 20 years after randomization. Based on meta-analysis of odds ratios (ORs) from each trial rather than on more sensitive actuarial analysis of the individual patient data, allocation to aspirin in the RCTs reduced the 20-year risk of death due to CRC. ORs for maximum aspirin use were 0.55 for CRC risk (95% CI, 0.41–0.76) and for any aspirin use were 0.58 for CRC risk (95% CI, 0.44–0.78).[
The Women's Health Study, the largest randomized trial of aspirin to date (N = 39,876), found no reduction in CRC mortality rates with the use of every other day low-dose aspirin during the first 10 years of follow-up. The study did not report on longer-term risk for CRC mortality.[
Aspirin has several important potential harms associated with its use that should be a part of any consideration of its use as a disease prevention strategy. Regular low-dose aspirin use increases the risks for major gastrointestinal bleeding and intracranial bleeding events, including hemorrhagic strokes. A systematic review of studies of aspirin use for primary cardiovascular disease prevention found that use of 100 mg or more of aspirin daily or every other day increased a person's risk for a major gastrointestinal bleed by 58% (OR, 1.58; 95% CI, 1.29–1.95) or an intracranial hemorrhage by 30% (OR, 1.30; 95% CI, 1.00–1.68). These risks may be greater among older individuals, men, and those individuals with comorbid risk factors that promote a risk of bleeding.[
Hormone Therapy (Estrogen Plus Progestin)
Several observational studies have suggested a decreased risk of colon cancer among users of postmenopausal female hormone supplements.[
The Women's Health Initiative (WHI) trial examined, as a secondary end point, the effect of combined estrogen-plus-progestin therapy and estrogen-only therapy on CRC incidence and mortality. Among women in the combined estrogen-plus-progestin group of the WHI, an extended follow-up (mean, 11.6 years) confirmed that fewer CRC were diagnosed in the combined hormone therapy group than in the placebo group (HR, 0.72; 95% CI, 0.56–0.94); the CRCs in women in the combined group were more likely to have lymph node involvement than the CRCs in women in the placebo group (50.5% vs. 28.6%; P < .001) and were classified at higher stages (regional and distant) (68.8% vs. 51.4%; P = .003). The number of CRC deaths in the combined group was higher than in the placebo group (37 vs. 27 deaths), but the difference was not statistically significant (HR, 1.29; 95% CI, 0.78–2.11).[
Polyp Removal
An analysis of data from the National Polyp Study (NPS), with external, historical controls, has commonly been cited to show a reduction of 76% to 90% in the subsequent incidence of CRC after colonoscopic polypectomy compared with three nonconcurrent, historical control groups.[
An additional long-term follow-up study (median follow-up, 15.8 years; maximum, 23 years) of the NPS cohort suggested an approximately 53% reduction in CRC mortality due to polypectomy (not just exclusion of persons with CRC at initial exam). However, the degree of reduction must be viewed with caution because this study did not have a direct comparison group, relying mainly on comparison to expected data from the National Cancer Institute's Surveillance, Epidemiology and End Results (SEER) Program. Further, details are not clear regarding factors that may have led to decreased mortality. Patients in the NPS were assigned to colonoscopy at years 1 and 3; colonoscopy was also offered to one of the two comparison groups at year 1; all participants were offered colonoscopy at year 6. However, following year 6, the exact surveillance that patients may have undergone and how that surveillance might have been associated with decreased CRC mortality were not well described.[
It is expected that further follow-up in the United Kingdom Flexible Sigmoidoscopy Screening Trial will be able to provide more detail about the long-term effect of polypectomy, at least on the left side of the colon.[
Other evidence about the benefit of sigmoidoscopy screening (at which time both polyps and early cancer would be removed) suggests that the impact of endoscopic screening, at least on the left side of the colon, is substantial and prolonged. In an RCT, 170,000 persons were randomly assigned to one-time sigmoidoscopy versus usual care. At sigmoidoscopy, polyps were removed, cancer was detected, and patients were referred for treatment. Based on sigmoidoscopy findings, persons were considered to have low risk if they had normal exams or only one or two small (<1 cm) tubular adenomas; such persons were not referred either for colonoscopy workup, or for colonoscopic surveillance. In a follow-up of 10 years, the left-sided CRC incidence in the low-risk group (about 95% of attendees were low risk) was 0.02% to 0.04% per year—a very low risk of CRC compared with average risk. The cause of reduced risk—whether due to detection and removal of large polyps or small ones, or selection of individuals at lower risk—is yet unclear.[
Other studies suggest that the polyps with the greatest potential to progress to CRC are larger polyps (i.e., >1.0 cm), which include most of those with villous or high-grade histologic features. Retrospective cohort studies also show the harms associated with polypectomy, including bleeding.[
References:
Nonsteroidal Anti-Inflammatory Drugs
One large cohort study (301,240 people with 3,894 colorectal cancer [CRC] cases) found an association between daily or weekly nonaspirin (non-ASA) nonsteroidal anti-inflammatory drug (NSAID) use and reduced 10-year incidence of proximal and distal colon cancer, but not rectal cancer, with an HR of 0.67 (95% confidence interval [CI], 0.58–0.77) for daily use for colon cancer. Because exposure to non-ASA NSAIDs was assessed only once, assessment was by self-report, and there is no information on dose or duration of use, the certainty of this single study must be rated low. Further research is needed before this finding can be accepted.[
Although evidence is currently inadequate to determine whether NSAIDs reduce CRC incidence, proponents suggest that any effect of these drugs results from their ability to inhibit the activity of cyclooxygenase (COX). COX is important in the transformation of arachidonic acid into prostanoids, prostaglandins, and thromboxane A2. NSAIDs include not only aspirin (ASA, which is considered separately here) and other, first-generation nonselective inhibitors of the two functional isoforms of COX, termed COX-1 and COX-2, but also newer second-generation drugs that inhibit primarily COX-2. Normally, COX-1 is expressed in most tissues and primarily plays a housekeeping role (e.g., gastrointestinal mucosal protection and platelet aggregation). COX-2 activity is crucial in stress responses and in mediating and propagating the pain and inflammation that are characteristic of arthritis.[
Nonselective COX inhibitors include indomethacin (Indocin); sulindac (Clinoril); piroxicam (Feldene); diflunisal (Dolobid); ibuprofen (Advil, Motrin); ketoprofen (Orudis); naproxen (Naprosyn); and naproxen sodium (Aleve, Anaprox). Selective COX-2 inhibitors include celecoxib (Celebrex), rofecoxib (Vioxx), and valdecoxib (Bextra). Rofecoxib and valdecoxib are no longer marketed because of an associated increased risk of serious cardiovascular events.
Both celecoxib and rofecoxib have been associated with serious cardiovascular events including dose-related death from cardiovascular causes, myocardial infarction, stroke, or heart failure.[
Authors | Dose/Trial Drug | Risk | Study Type |
---|---|---|---|
bid = twice a day; qd = every day; CI = confidence interval; HR = hazard ratio; OR = odds ratio; RR = relative risk; Rx = prescription. | |||
[ |
Rofecoxib <25 mg/qd; rofecoxib >25 mg/qd | OR, 1.47 (0.99–2.17) vs. 3.58 (1.27–10.17) | Nested case-control study all users |
[ |
Celecoxib 200 mg/qd vs. 400 mg bid | 3.4%; HR, 3.4 (95% CI, 1.4–7.8) | Sporadic adenoma prevention trial (N = 2,035) |
[ |
Rofecoxib 25 mg/qd | RR, 1.92 (95% CI, 1.19–3.11;P = .008) | Chemoprevention of sporadic adenoma |
[ |
Rofecoxib 25 mg/qd | RR (estimated), 2.66 (95% CI, 1.03–6.86;P = .04) | Chemoprevention of sporadic adenoma; median study Rx 7.4 months |
Other major harms from all NSAIDs are gastrointestinal bleeding and renal impairment. The incidence of reported major gastrointestinal bleeding events appears to be dose-related.[
Celecoxib reduces the incidence of adenomas; however, celecoxib does not have a clinical role in reducing the risk of sporadic CRC. Its long-term efficacy in preventing CRC has not been shown because of increased risk of cardiovascular events, and because there are other effective ways, such as screening to reduce CRC mortality.[
Several rigorous studies have demonstrated the effectiveness of sulindac in reducing the size and number of adenomas in familial polyposis.[
The NSAID piroxicam, at a dose of 20 mg/day, reduced mean rectal prostaglandin concentration by 50% in individuals with a history of adenomas.[
The potential for use of NSAIDs as a primary prevention measure is being studied. There are, however, several unresolved issues that preclude making general recommendations for their use. These include a paucity of knowledge about the proper dose and duration for these agents, and concern about whether the potential preventive benefits such as a reduction in the frequency or intensity of screening or surveillance could counterbalance long-term risks such as gastrointestinal ulceration and hemorrhagic stroke for the average-risk individual.[
Calcium supplements
A randomized placebo-controlled trial tested the effect of calcium supplementation (3 g calcium carbonate daily [1,200 mg elemental calcium]) on the risk of recurrent adenoma.[
In a randomized, double-blind, placebo-controlled trial involving 36,282 postmenopausal women, the administration of 500 mg of elemental calcium and 200 IU of vitamin D3 twice daily for an average of 7.0 years was not associated with a reduction in invasive CRC (HR, 1.08; 95% CI, 0.86–1.34; P = .051).[
Dietary Factors
Dietary fat and meat intake
Colon cancer rates are high in populations with high total fat intakes and are lower in those consuming less fat.[
A randomized controlled dietary modification study was undertaken among 48,835 postmenopausal women aged 50 to 79 years who were also enrolled in the WHI. The intervention promoted a goal of reducing total fat intake by 20%, while increasing daily intake of vegetables, fruits, and grains. The intervention group accomplished a reduction of fat intake of approximately 10% more than did the comparison group during the 8.1 years of follow-up. There was no evidence of reduction in invasive CRCs between the intervention and comparison groups with an HR of 1.08 (95% CI, 0.90–1.29).[
Explanations for the conflicting results regarding whether dietary fat or meat intake affects the risk of CRC [
Six case-control studies and two cohort studies have explored potential dietary risk factors for colorectal adenomas.[
Thus, the evidence is inadequate to determine whether reducing dietary fat and meat would reduce CRC incidence.
References:
Estrogen-Only Therapy
The estrogen-only intervention component of the Women's Health Initiative was conducted among women who had a hysterectomy, with colorectal cancer (CRC) incidence included as a secondary trial end point. CRC incidence was not decreased among women who had taken estrogens; after a median of 7.1 years of follow-up, 58 invasive cancers occurred in the estrogen arm compared with 53 invasive cancers in the placebo arm (hazard ratio [HR], 1.12; 95% confidence interval [CI], 0.77–1.63). Tumor stage and grade were similar in the two groups; deaths after CRC were 34% in the hormone group compared with 30% in the placebo group (HR, 1.34; 95% CI, 0.58–3.19).[
Statins
Overall, evidence indicates that statin use neither increases nor decreases the incidence or mortality of CRC. Although some case-control studies have shown a reduction in risk, neither a large cohort study [
References:
The PDQ cancer information summaries are reviewed regularly and updated as new information becomes available. This section describes the latest changes made to this summary as of the date above.
Incidence and Mortality
Updated statistics with estimated new cases and deaths for 2024 (cited American Cancer Society as reference 2). Also revised text to state that between 2011 and 2019, incidence rates for colorectal cancer in the United States declined by about 1% per year overall. However, this declining incidence is confined to individuals aged 65 years and older. Since the mid-1990s, the incidence rate increased by 1% to 2% per year in individuals younger than 55 years and stabilized in individuals aged 55 to 64 years. Over the last decade, the mortality rate declined by 1.8% per year.
This summary is written and maintained by the
Purpose of This Summary
This PDQ cancer information summary for health professionals provides comprehensive, peer-reviewed, evidence-based information about colorectal cancer prevention. It is intended as a resource to inform and assist clinicians in the care of their patients. It does not provide formal guidelines or recommendations for making health care decisions.
Reviewers and Updates
This summary is reviewed regularly and updated as necessary by the
Board members review recently published articles each month to determine whether an article should:
Changes to the summaries are made through a consensus process in which Board members evaluate the strength of the evidence in the published articles and determine how the article should be included in the summary.
Any comments or questions about the summary content should be submitted to Cancer.gov through the NCI website's
Levels of Evidence
Some of the reference citations in this summary are accompanied by a level-of-evidence designation. These designations are intended to help readers assess the strength of the evidence supporting the use of specific interventions or approaches. The PDQ Screening and Prevention Editorial Board uses a formal evidence ranking system in developing its level-of-evidence designations.
Permission to Use This Summary
PDQ is a registered trademark. Although the content of PDQ documents can be used freely as text, it cannot be identified as an NCI PDQ cancer information summary unless it is presented in its entirety and is regularly updated. However, an author would be permitted to write a sentence such as "NCI's PDQ cancer information summary about breast cancer prevention states the risks succinctly: [include excerpt from the summary]."
The preferred citation for this PDQ summary is:
PDQ® Screening and Prevention Editorial Board. PDQ Colorectal Cancer Prevention. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at:
Images in this summary are used with permission of the author(s), artist, and/or publisher for use within the PDQ summaries only. Permission to use images outside the context of PDQ information must be obtained from the owner(s) and cannot be granted by the National Cancer Institute. Information about using the illustrations in this summary, along with many other cancer-related images, is available in
Disclaimer
The information in these summaries should not be used as a basis for insurance reimbursement determinations. More information on insurance coverage is available on Cancer.gov on the
Contact Us
More information about contacting us or receiving help with the Cancer.gov website can be found on our
Last Revised: 2024-03-28
This information does not replace the advice of a doctor. Ignite Healthwise, LLC, disclaims any warranty or liability for your use of this information. Your use of this information means that you agree to the
Healthwise, Healthwise for every health decision, and the Healthwise logo are trademarks of Ignite Healthwise, LLC.
Individual and family medical and dental insurance plans are insured by Cigna Health and Life Insurance Company (CHLIC), Cigna HealthCare of Arizona, Inc., Cigna HealthCare of Illinois, Inc., Cigna HealthCare of Georgia, Inc., Cigna HealthCare of North Carolina, Inc., Cigna HealthCare of South Carolina, Inc., and Cigna HealthCare of Texas, Inc. Group health insurance and health benefit plans are insured or administered by CHLIC, Connecticut General Life Insurance Company (CGLIC), or their affiliates (see
All insurance policies and group benefit plans contain exclusions and limitations. For availability, costs and complete details of coverage, contact a licensed agent or Cigna sales representative. This website is not intended for residents of New Mexico.