Renal cell carcinoma (RCC) is commonly diagnosed in both men and women. In the United States in 2024, about 81,610 new cases of kidney cancer and renal pelvis cancer will occur, along with an estimated 14,390 deaths.[
Studies of several sequencing cohorts have evaluated patients with RCC using genetic testing panels that included many genes not previously associated with hereditary RCC. Many of these cohorts reinforce that the rate of germline alterations in classic RCC genes aligns with prior estimates. These cohorts also show a high incidence of other pathogenic variants, some of which occurred in DNA repair genes. The rate of other pathogenic alterations ranged from 12.8% to 17.0%.[
A retrospective single-center study of patients with early-onset RCC (diagnosed before age 46 y), found that participants with clinical phenotypes suggestive of RCC-associated pathogenic variants—like bilateral or multifocal tumors, non–clear cell renal histology, and extra-renal primary cancers—had the highest yields on germline RCC panel testing.[
In contrast, several studies reported that the incidence of germline pathogenic variants is much lower (4.1% to 6.4%) in unselected individuals with RCC who underwent sequencing during a research study.[
RCC occurs in both sporadic and heritable forms. Four major RCC syndromes with autosomal dominant inheritance have been identified. PDQ summaries are available for each of these syndromes:
For more information about sporadic kidney cancer, see
Natural History of Renal Cell Carcinoma
The natural history of each RCC syndrome is distinct and influenced by several factors, including histological features and underlying genetic alterations. Although it is useful to follow the predominant reported natural history of each syndrome, each affected individual must be evaluated and monitored for occasional individual variations. The individual prognosis depends on the characteristics of the renal tumor at the time of detection and intervention, which differs for each syndrome (VHL, HLRCC, HPRC, and BHD). Prognostic determinants at diagnosis include the stage of the RCC, whether the tumor is confined to the kidney, primary tumor size, Fuhrman nuclear grade, and multifocality.[
Family History as a Risk Factor for Renal Cell Carcinoma
Kidney cancer and renal pelvis cancer account for about 4.1% of all adult malignancies in the United States.[
Young age at RCC onset is also a clue that hereditary etiology is possible. Unlike sporadic RCC, which is generally diagnosed during the fifth to seventh decades of life, hereditary forms of RCC are generally diagnosed at an earlier age. In a review of more than 600 cases of hereditary RCC from the National Cancer Institute, the median age of RCC diagnosis was 37 years, with 70% of cases being diagnosed at age 46 years or younger.[
While there is much debate about the referral criteria for hereditary RCC genetic testing, the following organizations have offered some guidance:
These guidelines acknowledge that the following criteria can prompt a referral to genetic counseling: early age of RCC onset, family history of RCC (≥1 FDR/SDR with RCC), bilateral or multifocal RCCs, and suspicious RCC histology. A consensus statement published by a group of kidney cancer experts provides additional guidance that may help providers identify patients who can be referred to genetic counseling.[
When evaluating patients at risk of hereditary kidney cancer, specific clinical features help determine which test is the most appropriate to order. Single gene tests are available during family variant testing or when there is only suspicion for one specific kidney cancer syndrome. The following panel tests are also available: 1) broad cancer genetic panels of up to 100 genes associated with cancer predisposition, and 2) renal cancer genetic panels with 15 to 20 genes that have strong associations with hereditary kidney cancer syndromes. Most of these panels conduct targeted sequencing of the exon with little coverage of the intron, except for splice-site variants. In the future, RNA testing may be useful to evaluate variants of unknown significance identified by DNA testing, to add additional support for pathogenicity. Whole genome sequencing (WGS) can be considered for rare cases with clinical suspicion that had negative panel testing. WGS may detect structural variants in introns that can contribute to cancer predisposition. In a series of over 1,300 unselected patients with RCC who underwent WGS, 6.9% of patients had germline pathogenic variants identified in cancer predisposition genes.[
Other Risk Factors for Renal Cell Carcinoma
Studies of environmental and lifestyle factors contributing to the risk of RCC focus almost exclusively on sporadic (i.e., nonhereditary) RCC. Smoking, hypertension, and obesity are the major environmental and lifestyle risk factors associated with RCC.[
References:
There are four major hereditary renal cell carcinoma (RCC) syndromes. These syndromes are summarized in detail in the following PDQ summaries and in
Syndrome (Inheritance Pattern) | Gene Locus, Gene Type (Protein) | Renal Tumor Pathology | Cumulative Cancer Risk | Nonrenal Tumors and Associated Abnormalities |
---|---|---|---|---|
AD = autosomal dominant; ccRCC = clear cell renal cell carcinoma; CNS = central nervous system; PHEO = pheochromocytoma. | ||||
|
VHL3p26,tumor suppressor(pVHL) | ccRCC (multifocal) | 24%–45% | CNS hemangioblastoma, retinal hemangioblastomas, PHEO, pancreatic neuroendocrine tumor, endolymphatic sac tumor, cystadenoma of the pancreas, the epididymis, and the broad ligament |
|
FH1q42.1, tumor suppressor (fumarate hydratase) | HLRCC-associated RCC | Up to 32% | Cutaneous leiomyomas, uterine leiomyomas (fibroids) |
|
MET7q34, proto-oncogene (hepatocyte growth factor receptor) | Papillary RCC (formerly known as type 1 papillary RCC) | Approaching 100% | None known |
|
FLCN17p11.2, tumor suppressor (folliculin) | Hybrid oncocytic, chromophobe, oncocytoma, papillary, clear cell | 15%–30% | Cutaneous: fibrofolliculomas/ trichodiscomas |
Pulmonary: lung cysts, spontaneous pneumothoraces |
These major RCC syndromes are transmitted via an autosomal dominant mode of inheritance. This means that the altered gene is present in one of the parents and that the chances of transmitting this gene and the disease to the offspring is 50% for each pregnancy. Genetic tests performed in Clinical Laboratory Improvement Amendments (CLIA)-certified laboratories are available for the genes associated with VHL, HLRCC, HPRC, and BHD. Genetic counseling is a prerequisite for genetic testing. For more information, see
References:
The PDQ cancer information summaries are reviewed regularly and updated as new information becomes available. This section describes the latest changes made to this summary as of the date above.
Added
Added
This summary is written and maintained by the
Purpose of This Summary
This PDQ cancer information summary for health professionals provides comprehensive, peer-reviewed, evidence-based information about the genetics of renal cell carcinoma. It is intended as a resource to inform and assist clinicians in the care of their patients. It does not provide formal guidelines or recommendations for making health care decisions.
Reviewers and Updates
This summary is reviewed regularly and updated as necessary by the
Board members review recently published articles each month to determine whether an article should:
Changes to the summaries are made through a consensus process in which Board members evaluate the strength of the evidence in the published articles and determine how the article should be included in the summary.
The lead reviewers for Genetics of Renal Cell Carcinoma are:
Any comments or questions about the summary content should be submitted to Cancer.gov through the NCI website's
Levels of Evidence
Some of the reference citations in this summary are accompanied by a level-of-evidence designation. These designations are intended to help readers assess the strength of the evidence supporting the use of specific interventions or approaches. The PDQ Cancer Genetics Editorial Board uses a
Permission to Use This Summary
PDQ is a registered trademark. Although the content of PDQ documents can be used freely as text, it cannot be identified as an NCI PDQ cancer information summary unless it is presented in its entirety and is regularly updated. However, an author would be permitted to write a sentence such as "NCI's PDQ cancer information summary about breast cancer prevention states the risks succinctly: [include excerpt from the summary]."
The preferred citation for this PDQ summary is:
PDQ® Cancer Genetics Editorial Board. PDQ Genetics of Renal Cell Carcinoma. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at:
Images in this summary are used with permission of the author(s), artist, and/or publisher for use within the PDQ summaries only. Permission to use images outside the context of PDQ information must be obtained from the owner(s) and cannot be granted by the National Cancer Institute. Information about using the illustrations in this summary, along with many other cancer-related images, is available in
Disclaimer
The information in these summaries should not be used as a basis for insurance reimbursement determinations. More information on insurance coverage is available on Cancer.gov on the
Contact Us
More information about contacting us or receiving help with the Cancer.gov website can be found on our
Last Revised: 2024-10-15
This information does not replace the advice of a doctor. Ignite Healthwise, LLC, disclaims any warranty or liability for your use of this information. Your use of this information means that you agree to the
Healthwise, Healthwise for every health decision, and the Healthwise logo are trademarks of Ignite Healthwise, LLC.
Individual and family medical and dental insurance plans are insured by Cigna Health and Life Insurance Company (CHLIC), Cigna HealthCare of Arizona, Inc., Cigna HealthCare of Illinois, Inc., Cigna HealthCare of Georgia, Inc., Cigna HealthCare of North Carolina, Inc., Cigna HealthCare of South Carolina, Inc., and Cigna HealthCare of Texas, Inc. Group health insurance and health benefit plans are insured or administered by CHLIC, Connecticut General Life Insurance Company (CGLIC), or their affiliates (see
All insurance policies and group benefit plans contain exclusions and limitations. For availability, costs and complete details of coverage, contact a licensed agent or Cigna sales representative. This website is not intended for residents of New Mexico.