Learn about the medical, dental, pharmacy, behavioral, and voluntary benefits your employer may offer.
Disease Overview
The myelodysplastic/myeloproliferative neoplasms (MDS/MPN) are clonal myeloid disorders that have both dysplastic and proliferative features but are not properly classified as either myelodysplastic syndromes (MDS) or chronic myeloproliferative disorders (CMPD).[
The French-American-British classification scheme for myeloid disorders did not contain this overlap category, which made the classification of CMML particularly difficult.[
Incidence and Mortality
The etiology of MDS/MPN is not known. The incidence of MDS/MPN varies widely, ranging from approximately 3 per 100,000 individuals older than 60 years annually for CMML to as few as 0.13 per 100,000 children from birth to 14 years annually for JMML.[
Histopathology
The pathophysiology of MDS/MPN involves abnormalities in the regulation of myeloid pathways for cellular proliferation, maturation, and survival. Clinical symptoms are caused by complications resulting from the following:[
Patients with MDS/MPN do not have a Philadelphia chromosome or BCR::ABL fusion gene.
An international consortium has proposed uniform response criteria to be used in clinical trials because of the spectrum of presentations ranging from the myelodysplastic to the myeloproliferative.[
References:
Disease Overview
The World Health Organization (WHO) classifies chronic myelomonocytic leukemia (CMML) as a myelodysplastic/myeloproliferative neoplasm (MDS/MPN).[
CMML is a clonal disorder of a bone marrow stem cell. Monocytosis is a major defining feature. CMML exhibits heterogenous clinical, hematological, and morphologic features, varying from predominantly myelodysplastic to predominantly myeloproliferative. Evolution to acute myeloid leukemia (AML) portends a particularly poor prognosis.[
CMML is characterized pathologically by the following:[
Clinical features of CMML include the following:[
The median age at diagnosis of CMML is 65 to 75 years with a male predominance of 1.5 to 3.1.[
Morphologically, the disease is characterized by a persistent peripheral blood monocytosis (always >1 × 109 /L) that may exceed 80 × 109 /L with monocytes typically accounting for more than 10% of the white blood cells.[
Hepatosplenomegaly may be present.[
Recurrent somatic mutations have been identified in most patients with CMML, including mutant signaling molecules (especially NRAS, KRAS, JAK2, and SETBP1), epigenetic regulators (especially TET2 and ASXL1), splicing factors (especially SRSF2), and transcription factors (especially RUNX1).[
The best prognostic group has a median survival of more than 10 years with no leukemic evolution in the first decade of follow-up. The worst prognostic group has a median survival of 20 months with a 50% evolution to AML by 2 years.[
Prognostic factors associated with shorter survival include the following:[
Progression to acute leukemia occurs in approximately 15% to 20% of cases.[
Treatment Overview
Hydroxyurea is a treatment option for patients with worsening leukocytosis, thrombocytosis, or splenomegaly.[
The nucleoside azacitidine is an inhibitor of DNA methyltransferase that has been approved for the treatment of MDS and CMML, largely based on a Cancer and Leukemia Group B randomized trial and a randomized trial conducted in Europe.[
Bone marrow transplant (BMT) or stem cell transplant appears to be the only current treatment that alters the natural history of CMML. In a review of 118 young patients with MDS (median age, 24 years; range 0.3–53 years) who received allogeneic BMT from matched unrelated donors, the actuarial probability of survival at 2 years for the 12 patients with CMML was 10%. Transplant-related mortality was influenced by the age of the patient (i.e., <18 years, 40%; 18–35 years, 61%; >35 years, 81%). This study included patients who received transplants as early as 1986, which may have influenced the patient survival data.[
A case report suggested that targeted therapy with imatinib mesylate may be effective in a subset of patients with CMML with PDGFRB fusion oncogenes.[
Various chemotherapy regimens for CMML have been used with only modest success.[
Current Clinical Trials
Use our
References:
Disease Overview
Note: Juvenile myelomonocytic leukemia (JMML) was classified as a myelodysplastic syndrome (MDS) under the French-American-British scheme.[
JMML (also known as juvenile chronic myelomonocytic leukemia) is a rare hematopoietic malignancy of childhood accounting for 2% of all childhood leukemias.[
Major criteria (all three required)
Minor criteria (two or more required)
The clinical features of JMML at the time of initial presentation may include the following:[
The clinical and laboratory features of JMML can closely mimic a variety of infectious diseases, including the following:
Laboratory testing can distinguish whether JMML or infectious diseases have affected the clinical and hematologic findings.[
JMML typically presents in young children (median age approximately 1 year) and occurs more commonly in boys (male to female ratio approximately 2.5:1). The cause for JMML is not known.[
Morphologically, the peripheral blood picture in this disease shows leukocytosis, anemia, and frequently, thrombocytopenia.[
A distinctive characteristic of JMML leukemia cells is their spontaneous proliferation in vitro without the addition of exogenous stimuli, an ability that results from the leukemia cells being hypersensitive to GM-CSF.[
The median survival times for JMML vary from approximately 10 months to more than 4 years, depending partly on the type of therapy chosen.[
Treatment Overview
No consistently effective therapy is available for JMML. Historically, more than 90% of patients have died despite the use of chemotherapy.[
A recent retrospective review described 60 children with JMML treated with chemotherapy (nonintensive and intensive) and/or bone marrow transplant (BMT) using sibling or unrelated human leukocyte antigen (HLA)-matched donor marrow or autologous marrow. The median survival was 4.4 years.[
BMT seems to offer the best chance of cure for JMML.[
In a retrospective study investigating the role of BMT for chronic myelomonocytic leukemia (CMML), 43 children with CMML and given BMT were evaluated. In 25 cases, the donor was a HLA-identical or a one-antigen-disparate relative, in four cases a mismatched family donor, and in 14 cases a matched unrelated donor. Conditioning regimens consisted of total-body radiation therapy and chemotherapy in 22 patients, whereas busulfan with other cytotoxic drugs were used in the remaining patients. Six of 43 patients (14%), five of whom received transplants from alternative donors, had graft failure. Probabilities of transplant-related mortality for children transplanted from HLA-identical/one-antigen-disparate relatives or from matched unrelated donors/mismatched relatives were 9% and 46%, respectively. The probability of relapse for the entire group was 58%; the 5-year event-free survival (EFS) rate was 31%. The authors of this study concluded that children with CMML and an HLA-compatible relative should receive a transplant as early as possible.[
In a retrospective review from Japan, the records of 27 children with JMML who underwent allogeneic hematopoietic stem cell transplant (SCT) were examined to determine the role of different variables that potentially influence outcome. The source of grafts was HLA-identical siblings in 12 cases, HLA-matched unrelated individuals in 10 cases, and HLA-mismatched donors in five cases. Total-body radiation therapy was used in 18 cases. At 4 years after SCT, EFS and overall survival (OS) rates were 54.2% (+/- 11.2% standard error [SE]) and 57.9% (+/- 11.0% SE), respectively. Six patients died of relapse and three died of complications. Patients with abnormal karyotypes showed a significantly lower OS than those with normal karyotypes (P < .001). Patients younger than 1 year showed a significantly higher OS than those older than 1 year. Other variables studied were not associated with OS. A multivariate analysis of these factors indicated that the abnormal karyotype was the only significant risk factor for lower OS.[
Molecular-targeting therapies under evaluation include the use of farnesyltransferase inhibitors that prevent RAS protein maturation, which may result in increased tumor cell apoptosis and inhibition of tumor cell growth.[
Current Clinical Trials
Use our
References:
Disease Overview
Atypical chronic myeloid leukemia (aCML) is a leukemic disorder that exhibits both myelodysplastic and myeloproliferative features at the time of diagnosis.
Atypical CML is characterized pathologically by the following:[
Clinical features of aCML include the following:[
Although cytogenetic abnormalities are found in as many as 80% of the patients with aCML, none is specific.[
The exact incidence of aCML is unknown. The median age at the time of diagnosis of this rare leukemic disorder is in the seventh or eighth decade of life.[
Morphologically, aCML is characterized by myelodysplasia associated with bone marrow and peripheral blood patterns similar to chronic myeloid leukemia, but cytogenetically it lacks a Philadelphia chromosome or BCR::ABL fusion gene.[
The median survival times for aCML are reported to be less than 20 months, and thrombocytopenia and marked anemia are poor prognostic factors.[
Treatment Overview
The optimal treatment of aCML is uncertain because of the rare incidence of this chronic leukemic disorder. Treatment with hydroxyurea may lead to short-lived partial remissions of 2 to 4 months in duration.[
Current Clinical Trials
Use our
References:
Disease Overview
Myelodysplastic/myeloproliferative neoplasm, unclassifiable (MDS/MPN-UC) (also known as mixed myeloproliferative/myelodysplastic syndrome, unclassifiable and overlap syndrome, unclassifiable) shows features of both myeloproliferative disease and myelodysplastic disease but does not meet the criteria for any of the other MDS/MPN entities.[
Diagnostic criteria for MDS/MPN-UC can be either:[
Clinical characteristics of MDS/MPN-UC include the following:
The incidence and etiology of MDS/MPN-UC are unknown.
Laboratory features typically include anemia and dimorphic erythrocytes on the peripheral blood smear.[
No cytogenetic or molecular findings are available that are specific for MDS/MPN-UC. In one small series, six of nine patients (those with ringed sideroblasts associated with marked thrombocytosis [RARS-T]) showed a JAK2 V617F mutation causing constitutive activation of the JAK2 tyrosine kinase (a mutation also commonly observed in patients with polycythemia vera, essential thrombocythemia, and idiopathic myelofibrosis).[
Treatment Overview
Adult patients with MDS/MPN associated with platelet-derived growth factor receptor gene rearrangements are candidates for imatinib mesylate at standard dosages.[
Current Clinical Trials
Use our
References:
The PDQ cancer information summaries are reviewed regularly and updated as new information becomes available. This section describes the latest changes made to this summary as of the date above.
Editorial changes were made to this summary.
This summary is written and maintained by the
Purpose of This Summary
This PDQ cancer information summary for health professionals provides comprehensive, peer-reviewed, evidence-based information about the treatment of myelodysplastic/myeloproliferative neoplasms. It is intended as a resource to inform and assist clinicians in the care of their patients. It does not provide formal guidelines or recommendations for making health care decisions.
Reviewers and Updates
This summary is reviewed regularly and updated as necessary by the
Board members review recently published articles each month to determine whether an article should:
Changes to the summaries are made through a consensus process in which Board members evaluate the strength of the evidence in the published articles and determine how the article should be included in the summary.
The lead reviewer for Myelodysplastic/Myeloproliferative Neoplasms Treatment is:
Any comments or questions about the summary content should be submitted to Cancer.gov through the NCI website's
Levels of Evidence
Some of the reference citations in this summary are accompanied by a level-of-evidence designation. These designations are intended to help readers assess the strength of the evidence supporting the use of specific interventions or approaches. The PDQ Adult Treatment Editorial Board uses a formal evidence ranking system in developing its level-of-evidence designations.
Permission to Use This Summary
PDQ is a registered trademark. Although the content of PDQ documents can be used freely as text, it cannot be identified as an NCI PDQ cancer information summary unless it is presented in its entirety and is regularly updated. However, an author would be permitted to write a sentence such as "NCI's PDQ cancer information summary about breast cancer prevention states the risks succinctly: [include excerpt from the summary]."
The preferred citation for this PDQ summary is:
PDQ® Adult Treatment Editorial Board. PDQ Myelodysplastic/Myeloproliferative Neoplasms Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at:
Images in this summary are used with permission of the author(s), artist, and/or publisher for use within the PDQ summaries only. Permission to use images outside the context of PDQ information must be obtained from the owner(s) and cannot be granted by the National Cancer Institute. Information about using the illustrations in this summary, along with many other cancer-related images, is available in
Disclaimer
Based on the strength of the available evidence, treatment options may be described as either "standard" or "under clinical evaluation." These classifications should not be used as a basis for insurance reimbursement determinations. More information on insurance coverage is available on Cancer.gov on the
Contact Us
More information about contacting us or receiving help with the Cancer.gov website can be found on our
Last Revised: 2024-06-14
This information does not replace the advice of a doctor. Ignite Healthwise, LLC, disclaims any warranty or liability for your use of this information. Your use of this information means that you agree to the
Healthwise, Healthwise for every health decision, and the Healthwise logo are trademarks of Ignite Healthwise, LLC.
Individual and family medical and dental insurance plans are insured by Cigna Health and Life Insurance Company (CHLIC), Cigna HealthCare of Arizona, Inc., Cigna HealthCare of Illinois, Inc., Cigna HealthCare of Georgia, Inc., Cigna HealthCare of North Carolina, Inc., Cigna HealthCare of South Carolina, Inc., and Cigna HealthCare of Texas, Inc. Group health insurance and health benefit plans are insured or administered by CHLIC, Connecticut General Life Insurance Company (CGLIC), or their affiliates (see
All insurance policies and group benefit plans contain exclusions and limitations. For availability, costs and complete details of coverage, contact a licensed agent or Cigna sales representative. This website is not intended for residents of New Mexico.