Note: The Summary of Evidence section summarizes the published evidence on this topic. The rest of the summary describes the evidence in more detail.
Other PDQ summaries on
Intervention
Screening, usually at age 6 months, for urine vanillylmandelic acid and homovanillic acid, which are metabolites of the hormones, norepinephrine and dopamine.
Benefits
Based on solid evidence, screening for neuroblastoma does not lead to decreased mortality.
Description of the Evidence
Study Design: Evidence obtained from nonrandomized controlled trials. |
Internal Validity: Good. |
Consistency: Good. |
Magnitude of Effects on Health Outcomes: No effect on mortality. |
External Validity: Fair. |
Harms
Based on solid evidence, screening infants for neuroblastoma leads to an increase in incidence of early-stage neuroblastoma. There is no concurrent decrease in incidence in children who are screened for advanced-stage disease, which typically has a poor outcome, or in children older than 1 year. The cases identified by screening almost exclusively have biologically favorable properties.
Based on solid evidence, screening infants for neuroblastoma results in overdiagnosis (diagnosis of some neuroblastomas detectable by mass screening that would not have been clinically diagnosed later). This leads to unnecessary diagnostic and therapeutic procedures with consequent physical and psychological morbidity, including death from treatment complications.
Description of the Evidence
Study Design: Evidence obtained from nonrandomized controlled trials. |
Internal Validity: Good. |
Consistency: Good. |
Magnitude of Effects on Health Outcomes: No effect on mortality. Screening may overdiagnose as many as seven cases per 100,000 infants screened. |
External Validity: Fair. |
Incidence and Mortality
About 7% of all malignancies in children younger than 15 years are neuroblastomas. About one-quarter of cancers in the first year of life are neuroblastomas, making this the most frequent histological type of infant cancer.[
Screening Method and Sensitivity
The risk factors for and causes of neuroblastoma have not been established, and therefore it is not possible to provide information or advice for the primary prevention of this disease. It is generally thought that many neuroblastomas are present and detectable at birth, thereby allowing for detection of tumors by a single, once-in-a-lifetime screening test, such as those used for neonatal screening for noncancerous conditions (e.g., phenylketonuria). Screening is performed through biochemical tests for metabolites of norepinephrine and dopamine (i.e., vanillylmandelic acid [VMA], and homovanillic acid [HVA]). Seventy-five percent to 90% of cases of neuroblastoma excrete these substances into the urine, which can be measured in urine specimens.[
Testing of liquid urine samples or of samples collected on filter paper for VMA and HVA is possible.[
There are no standard cutoff levels between positive and negative VMA and HVA tests. One recommendation is to use a VMA cutoff level of 25 μg/mg creatinine and an HVA cutoff level of 32 μg/mg creatinine. Alternatively, individual laboratories use a level of two standard deviations above that laboratory's age-specific mean to identify specimens for reanalysis. On reanalysis, a level of three standard deviations above the mean is used to determine the need for diagnostic evaluation.[
The sensitivity of the screening procedure used in different studies ranges from 40% to 80%.[
References:
Evidence of screening effect derives from descriptive studies of local and national programs in Japan, uncontrolled pilot experiences at a number of sites in Europe and the United States, and population-based studies in Canada and Germany.[
An increase in survival rates among screen-detected cases would be expected if screening was detecting neuroblastoma at an earlier and more curable stage. While improved survival rates after initiation of screening have been reported,[
Screening results in an increased incidence of early-stage disease. The cases detected by screening almost exclusively have biologically favorable properties (unamplified N-myc oncogene, near triploidy, and favorable histology), and this type of favorable neuroblastoma has a high survival rate, whether detected by screening or detected clinically.[
Some authors have argued that the Japanese experience shows that the number of children older than 1 year, who are diagnosed with neuroblastoma, may have decreased since the inception of screening [
A study of mortality trends before and after the national mass screening program in Japan for neuroblastoma analyzed age-specific mortality rates from 1980 through 2006. Screening began in the mid-1980s and was halted in 2003. Mortality rates were either stable through the entire period for age groups 5 years to 9 years and 10 years to 14 years, or were declining before the initiation of screening and continued to do so through 2006 for age groups younger than 1 year and 1 year to 4 years. Because the most recent year of death analyzed was 2006, any increase in age-specific mortality associated with the cessation of mass screening in 2003 would have been expected to occur among children younger than 1 year or 1 year to 4 years. No such increase was observed. This is the first postscreening analysis to provide evidence that screening had no impact on mortality rates and that stopping screening had no adverse effect.[
A study compared neuroblastoma incidence and mortality rates in Japan in three cohorts: children born before screening between 1980 and 1983, and those born during screening between 1986 and 1989, and between 1990 and 1998.[
Before and after the cessation of the Japanese mass screening program in 2003, another study of neuroblastoma incidence and mortality was conducted in five prefectures (incidence) and nationwide (mortality). This study extended follow-up after cessation of screening several years beyond that reported in previous publications.[
The Quebec Neuroblastoma Screening Project compared neuroblastoma incidence and mortality in a 5-year birth cohort (n = 476,603) from Quebec (where urinary screening was offered at 3 weeks and 6 months [overall compliance, 92%]) with various North American birth cohorts in which no screening took place. In this study, the incidence of early-stage disease in children younger than 1 year, in the screened population, more than doubled that expected; while in the control population, it approximated that expected (standardized incidence ratio, 3.03; 95% confidence interval [CI], 2.30–3.86) in Quebec versus 0.82 in Minnesota (95% CI, 0.41–1.38) and Ontario (95% CI, 0.53–1.17).[
There is no evidence from controlled studies or randomized trials of decreases in mortality associated with screening.
References:
The PDQ cancer information summaries are reviewed regularly and updated as new information becomes available. This section describes the latest changes made to this summary as of the date above.
Added
This summary is written and maintained by the
Purpose of This Summary
This PDQ cancer information summary for health professionals provides comprehensive, peer-reviewed, evidence-based information about neuroblastoma screening. It is intended as a resource to inform and assist clinicians in the care of their patients. It does not provide formal guidelines or recommendations for making health care decisions.
Reviewers and Updates
This summary is reviewed regularly and updated as necessary by the
Board members review recently published articles each month to determine whether an article should:
Changes to the summaries are made through a consensus process in which Board members evaluate the strength of the evidence in the published articles and determine how the article should be included in the summary.
Any comments or questions about the summary content should be submitted to Cancer.gov through the NCI website's
Levels of Evidence
Some of the reference citations in this summary are accompanied by a level-of-evidence designation. These designations are intended to help readers assess the strength of the evidence supporting the use of specific interventions or approaches. The PDQ Screening and Prevention Editorial Board uses a
Permission to Use This Summary
PDQ is a registered trademark. Although the content of PDQ documents can be used freely as text, it cannot be identified as an NCI PDQ cancer information summary unless it is presented in its entirety and is regularly updated. However, an author would be permitted to write a sentence such as "NCI's PDQ cancer information summary about breast cancer prevention states the risks succinctly: [include excerpt from the summary]."
The preferred citation for this PDQ summary is:
PDQ® Screening and Prevention Editorial Board. PDQ Neuroblastoma Screening. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at:
Images in this summary are used with permission of the author(s), artist, and/or publisher for use within the PDQ summaries only. Permission to use images outside the context of PDQ information must be obtained from the owner(s) and cannot be granted by the National Cancer Institute. Information about using the illustrations in this summary, along with many other cancer-related images, is available in
Disclaimer
The information in these summaries should not be used as a basis for insurance reimbursement determinations. More information on insurance coverage is available on Cancer.gov on the
Contact Us
More information about contacting us or receiving help with the Cancer.gov website can be found on our
Last Revised: 2023-06-15
This information does not replace the advice of a doctor. Ignite Healthwise, LLC, disclaims any warranty or liability for your use of this information. Your use of this information means that you agree to the
Healthwise, Healthwise for every health decision, and the Healthwise logo are trademarks of Ignite Healthwise, LLC.
Individual and family medical and dental insurance plans are insured by Cigna Health and Life Insurance Company (CHLIC), Cigna HealthCare of Arizona, Inc., Cigna HealthCare of Illinois, Inc., Cigna HealthCare of Georgia, Inc., Cigna HealthCare of North Carolina, Inc., Cigna HealthCare of South Carolina, Inc., and Cigna HealthCare of Texas, Inc. Group health insurance and health benefit plans are insured or administered by CHLIC, Connecticut General Life Insurance Company (CGLIC), or their affiliates (see
All insurance policies and group benefit plans contain exclusions and limitations. For availability, costs and complete details of coverage, contact a licensed agent or Cigna sales representative. This website is not intended for residents of New Mexico.